STATISTICA Téma 4. Pravděpodobnostní kalkulátor- pouze pro náhodné veličiny se spojitým rozdělením

V menu *Statistika* zvolíme *Základní statistiky a tabulky*. V submenu zvolíme nabídku *Pravděpodobnostní kalkulátor*. Objeví se okno:

Obr. 1

V levé části okna je uvedena nabídka typů *rozdělení*. Z ní si vybereme. Další způsob práce se liší podle toho, zda počítáme hodnotu distribuční funkce nebo zda hledáme kritické hodnoty.

1) Výpočet distribuční funkce

Předpokládejme, že X má rozdělení N(2, 4). Hledáme F(0,9) , tj. P ($X \le 0.9$). Nastavení okna je uvedeno na obr. 2.

Kalkulátor rozdě	ilení pravděpodobno	osti	? ×
Rozdělení Beta Cauchy Chi 2	☐ Inverzní ☐ Oboustranné ☐ (1-Kumulativní p)	🗖 Do protokolu 🖨 🗖 Vytvořit graf	Výpočet Konec
Exponenciální Extrém. hodnot F (Fisherovo) Gama Laplaceovo	×: 0,9 p:	průměr: 2	4 ¥
Log-normální Logistické Paretovo Rayleighovo t (Studentovo)	Hustota pravděp.:	Pravděpodobnos	t:
Weibullovo Z (Normální) V Pevné měřítk		~	

Natavení potvrdíme tlačítkem Výpočet. Výsledek se doplní do okénka p: -viz obr.3.

Obr. 3

Kalkulátor rozdělení pravděpodobnosti 🛛 🤗			
Rozdělení Beta Cauchy Chi 2 Exponenciální Extrém. hodnot F (Fisherovo) Gama	Inverzní Oboustranné (1-Kumulativní p X: 0,9 p: _29116	Do protokolu 🖨 Vytvořit graf) Průměr: 2 0 🗣 SmOdch: 2	Výpočet Konec
Log-normální Logistické Paretovo Rayleighovo t (Studentovo) Weibullovo Z (Normální)	Hustota pravděp.	: Pravděpodobn	ost:

Představu o rozdělení poskytnou grafy *Hustota pravděp*.: a *Pravděpodobnost* v dolní polovině okna. Pokud by byla vyšrafována pouze malá část grafu – nebo dokonce by šrafování bylo mimo graf - a tudíž nepřehledné, vypneme tlačítko *Pevné měřítko* v levém dolním rohu okna.

2) Výpočet kvantilu

Chceme spočítat kvantil $t_{0.95}(9)$ Studentova t- rozdělení. Nastavení je uvedeno na obr.4.

Obr. 4

Kalkulátor rozdě	lení pravděpodobnosti	<u>?</u> ×
Rozdělení Beta Cauchy Chi 2 Exponenciální Extrém. hodnot F (Fisherovo) Gama Laplaceovo Log-normální Logistické Paretovo Rayleighovo t (Studentovo) Weibullovo Z (Normální)	✓ Inverzní Do Oboustranné Vyi (1-Kumulativní p) t: p: 0,95 ✓	protokolu 🖨 Výpočet tvořit graf Konec sv: 9

Potvrdíme – li nastavení tlačítkem Výpočet, doplní se výsledek do okénka t: -viz obr.5

EXCEL

Téma 4. Pravděpodobnostní kalkulátor- pouze pro náhodné veličiny s diskrétním rozdělením

Binomické rozdělení

V seznamu statistických funkcí vyhledáme funkci *BINOMDIST*. V okně, které se otevře- viz obr. 7-, doplníme údaje.

Do políčka Úspěch zadáme hodnotu x, tj. hodnotu, kterou má náhodná veličina nabývat.

Do políčka *Pokusy* zadáme hodnotu *n*, tj.uvedeme počet nezávislých pokusů.

Do políčka *Pst_úspěchu* zadáme *p*, tj. uvedeme pravděpodobnost každého úspěšného pokusu. Do políčka *Počet* zapíšeme buď slovo *nepravda* –chceme-li spočítat P(X=x), nebo slovo *pravda*, chceme-li spočítat hodnotu distribuční funkce F(x).

<u>Příklad</u>: házíme-li 10x mincí a chceme-li spočítat pravděpodobnost, že panna padne 6x, naeditujeme funkci BINOMDIST(6; 10; 0,5; nepravda). Chceme-li spočítat pravděpodobnost, že panna padne maximálně 6x, naeditujeme funkci BINOMDIST(6; 10; 0,5; pravda).

Obr. 6

Eunkce:		<u>N</u> ázev funkce:	
naposledy použité vše finanční datum a čas matematické statistické vyhledávací databáze text logické informační	×	AVERAGEA BETADIST BETAINV BINOMDIST CONFIDENCE COUNTBLANK COUNTIF COVAR CRITBINOM ČETNOSTI	
BINOMDIST(úspěch;po Vrátí hodnotu binomického	okusy;pr o rozděler	st_úspěchu;počet) ní pravděpodobnosti jednotlivýc OK	:h veličin. Storno

Úspěch	<u>.</u>	= číslo		
Pokusy	<u>.</u>	= číslo		
Prst_úspěchu	<u>N</u>	= číslo		
Počet		= logická		
= Vrátí hodnotu binomického rozdělení pravděpodobnosti jednotlivých veličin. Úspěch je počet úspěšných pokusů.				
2 Výsled	9K =	OK Storno		

Hypergeometrické rozdělení

V seznamu statistických funkcí vyhledáme funkci *HYPERGEOMDIST*. V okně, které se otevře- viz obr. 9-, doplníme údaje.

Do políčka Úspěch zadáme hodnotu x, tj. hodnotu, kterou má náhodná veličina nabývat.

Do políčka *Celkem* zadáme hodnotu *n*, tj.uvedeme počet závislých pokusů.

Do políčka *Základ_úspěch* zadáme M, tj. uvedeme počet jednotek, které mají sledovanou vlastnost.

Do políčka Základ_celkem zadáme N, tj. uvedeme rozsah souboru, z něhož vybíráme.

<u>Příklad</u>:V bonboniéře je 20 bonbónů, z toho 8 nugátových. Z bonboniéry náhodně vybereme 4 bonbóny. Chceme-li spočítat pravděpodobnost, že jeden z nich je nugátový, tj. P(X=1), zadáme funkci *HYPERGEOMDIST(1; 4; 8 ;20)*. Chceme-li spočítat pravděpodobnost, že maximálně jeden z nich je nugátový, musíme spočítat P(X=0) a P(X=1). Výsledky poté sečteme.

HYPGEOMDIST		
Úspěch	📑 = číslo	
Celkem	🗾 = číslo	
Základ_úspěch	🗾 = číslo	
Základ_celkem	📑 🔤 číslo	
Vrátí hodnotu hypergeometrického rozdělení. Úspěch je počet úspěšných pokusů ve výběru.	=	
Výsledek =	ОК	Storno

Poissonovo rozdělení

V seznamu statistických funkcí vyhledáme funkci *POISSON*. V okně, které se otevře- viz obr. 11-, doplníme údaje.

Do políčka X zadáme hodnotu x, tj. hodnotu, kterou má náhodná veličina nabývat.

Do políčka *Střední* zadáme hodnotu λ , $\lambda = np$, tj.uvedeme střední hodnotu náhodné veličiny. Do políčka *Součet* zapíšeme buď slovo *nepravda* –chceme-li spočítat **P**(**X**=**x**), nebo slovo *pravda*, chceme-li spočítat hodnotu distribuční funkce **F**(**x**).

Obr. 10

lozit funkci			<u> </u>
<u>F</u> unkce:		<u>N</u> ázev funkce:	
naposledy použité vše finanční datum a čas matematické	4	NORMSDIST NORMSINV PEARSON PERCENTIL PERCENTRANK	<u></u>
statistické vyhledávací databáze text		PERMUTACE POČET POČET2 POISSON	
logické informační	~	PROB PRŮMĚR	_
POISSON(x;střední;sou	<mark>učet)</mark> rozdělení		
araci nocinoca Poissonova	1020616111		
2		ОК	Storno

POISSON	V	
	x	🗾 = číslo
	Střední	🗾 = číslo
	Součet	📑 🔤 logická
Vrátí hod	notu Poissonova rozdělení. X je počet událostí.	=
2	Výsledek =	OK Storno